Episode 20

Energy and Momentum for Rigid Bodies

ENGN0040: Dynamics and Vibrations Allan Bower, Yue Qi

School of Engineering Brown University

Topics for todays class

Conservation Laws for Systems of Rigid Bodies

- Work-Power-Energy relations for rigid bodies
- 2. Angular Impulse Angular Momentum relations for rigid bodies

Examples of 3D motion of rigid bodies (optional)

- 1. Steady precession of a spinning wheel
- 2. Boomerangs
- 3. Spinning wheel on a turntable

6.6 Work-Energy relations for systems of maid bodies

Rigid bodies = distributions of particles

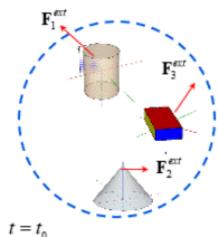
=> we can use energy equations for systems of
particles

$$\mathcal{P}^{e \times t} = \underbrace{d}_{dt} (T + U)$$

Use rigid body formulas

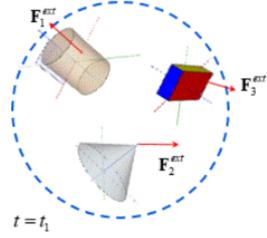
External Power P^{ext}(t)

External work $\Delta W^{ext} = \int_{t_0}^{t_1} P(t) dt$



 $t = t_0$ Total KE T_0^{TOT}

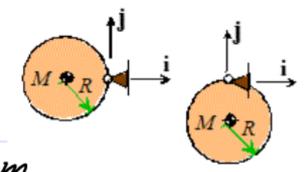
Total KE U_0^{TOT}



Total KE T_1^{TOT}

Total KE U_1^{TOT}

Example 6.6.1: The disk swings freely about the pivot at O. It is released from rest with COM level with O. Find its angular speed when the COM is vertically below O.



System = disk + earth

$$\Rightarrow \Delta W^{ext} = 0$$
; Conservative system
 $\Rightarrow T_1 + U_1 = T_0 + U_0$

$$T_1 = \frac{1}{2} I_{on} \omega_z^2$$
 $U_1 = -MgR$

$$\Rightarrow W_2 = 2\sqrt{\frac{9}{3R}}$$

- PE Example 6.6.2: ASTM standard test to determine the 'sweet spot' on a bat:
 - (1) Measure the period au of oscillations of the bat suspended from the handle
 - (2) Calculate the distance of the 'sweet spot' from the handle using $d = \tau^2 g / (4\pi^2)$ Why does this work?

Find formula for & by analyzing vibrations Energy method

Recall
$$\mathcal{C} = \frac{2\pi}{11} \Rightarrow \frac{2^2g}{4\pi^2} = \frac{g}{wn^2} = \frac{I_{022}}{mL} = d$$

ASTM WORKS!

Example 6.6.3: The bars have mass per unit length 50 kg/m. The mass attached to E has mass 500kg. Find the motor torque at A at the instant shown.

System = earth + jack

$$\Rightarrow P^{ext} = Qw = A(T+U)$$

Preliminary Calcs

$$W_{BC} = 0 \propto_{BC} = -15/2 \quad W_{CE} = 2 \propto_{CE} = 3 \quad V_{E} = -5f$$

 $Q_{C} = 10i - 7.5f$

We also need Va, ag for AB, BC

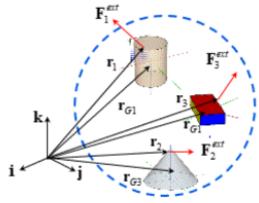
page 8

6.7 Angular Impulse - Momentum for systems

We can use equations for systems of particles

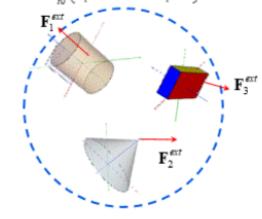
External Moment $\sum_{i} \mathbf{r}_{i} \times \mathbf{F}_{i}^{ext} + \sum_{i} \mathbf{Q}$

External Angular Impulse $\mathbf{A}^{ext} = \int_{0}^{t_{i}} \left\{ \sum_{i} \mathbf{r}_{i} \times \mathbf{F}_{i}^{ext} + \sum_{i} \mathbf{Q} \right\} dt$



 $t = t_0$

Total Angular Momentum h TOT



 $t = t_1$

Total Angular Momentum h TOT

Example 8.7.1 In the 'ice skater trick' the skaters change their mass moment of inertia I_{Gas} by retracting their arms. Find a formula for ω

$$=> W_1 = I_{G220} W_0$$

$$I_{G221}$$

 $\omega \mathbf{k}$

Example 8.7.2 The figure shows a 'yoyo de-spin' of a satellite with mass moment of inertia I_{Gz} Two masses m are attached to the cylinder by inextensible tethers.

At time t=0 the satellite spins with angular speed Ω_0 and the tethers are tightly wound around the cylinder. To de-spin, the masses are released and the tethers unwind. When the satellite comes to rest the tethers are cut.

Find the length *L* of the tethers when they are cut.

No ext. forces
$$\Rightarrow \Delta W = 0$$
 $A = 0$
Hence $T_1 + U_1 = T_0 + U_0$
 $h_1^{TOT} = h_0^{TOT}$

Circular motion U=WR

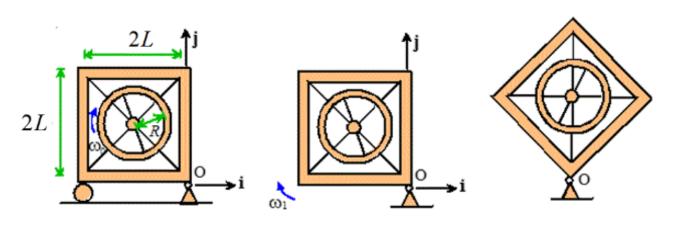
Stationary

After de-spin

$$T_0 = \frac{1}{2}I_{G22}Q_0^2 + 2\times\frac{1}{2}m\left(SLR\right)^2$$

$$\Rightarrow T_0 = \frac{1}{2}\left(I_{G22} + 2mR^2\right)SL_0^2$$

```
At release:
          Point C on tether is
          Stationary
 VA-VC = de kx(-Leo) kxlo=-lr.
         L(dø/dt) er
     Ti=Zx=m (Lde) (symmetry)
                                           After de-spin
         = m L^2 (d\phi/dt)^2
h,=2[A×mVA=2(-Leo+Rer)×mL(do/dt)er
   = 2mh2 (dø/dt) k
 T,=To=> /2(IG2+2MR2) Sto = M22(d8/dt)2 (1)
 h,=ho => (Ig2 +2mR2) 520 = 2m22 (d$/dt)
\frac{(2)^2}{2(1)} \Rightarrow 2mL^2 = I_{622} + 2mR^2 \Rightarrow L = R/
```

Example 8.7.3 The figure shows a 1-D prototype for the 'Cubeli.' The frame has total mass *M*, the ring has mass *m*.

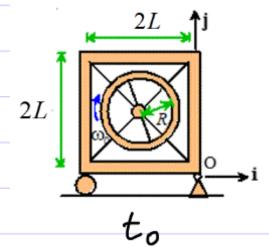
At time t=0 the frame is stationary and the ring spins with speed ω_0 . The ring is then braked rapidly and locked to the frame. The frame and ring rotate together and come to rest with the frame balanced on a corner. Find the necessary speed ω_0

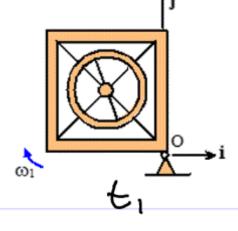
Preliminary calcs: Find Igz of frame and Iozz

Frame:
$$F_{G22} = 4 \left\{ \frac{M}{4} \frac{(2L)^2}{12} + \frac{M}{4} L^2 \right\} = \frac{4ML^2}{3}$$

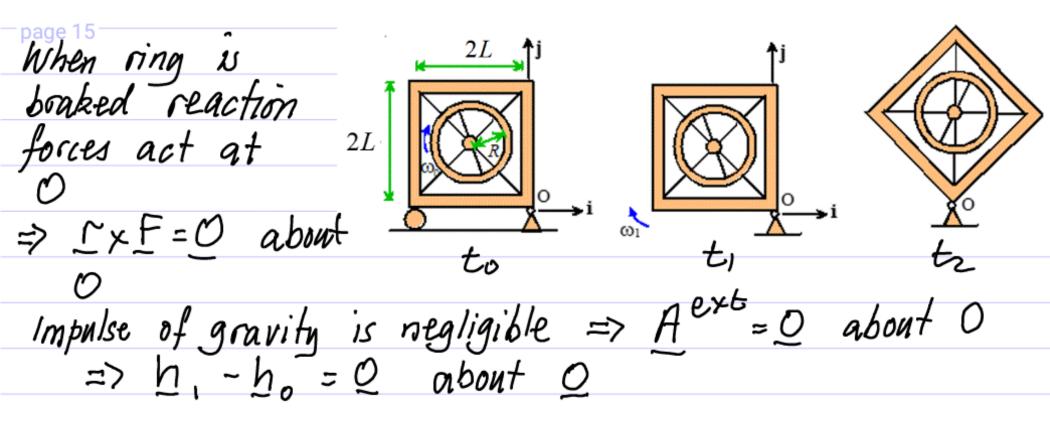
Total
$$I_{OZZ} = 4ML^2 + mR^2 + (M+m)(\sqrt{2}L)^2$$

$$T_2 + U_2 = T_1 + U_1$$





$$\omega_f = \int \frac{2 (M+m) g L (I2^{1}-1)}{I_{022}}$$



$$h_1 = h_0 \Rightarrow \omega_0 = \left(\frac{\text{Iozz}}{mR^2}\right) \omega f$$

$$\Rightarrow \omega_0 = \frac{2(M+m)gL([2^2-1])}{mR^2} \sqrt{\frac{10}{3}} \frac{ML^2 + m(R^2+2L^2)}{3}$$

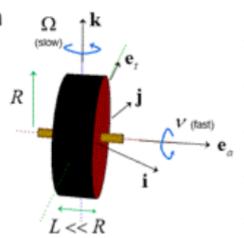
page 15

6.8 Examples of 3D motion of rigid bodies

Example 6.8.1 Find the pure moment required to cause steady precession of a spinning wheel

Assume COM stationary
$$V_{G} = \alpha_{G} = 0$$

Neglect gravity



$$\Rightarrow I_{GW} = I_{a} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \nu \\ 0 \\ 2 \end{bmatrix} = I_{a} \begin{bmatrix} 2\nu \\ 0 \end{bmatrix} \Rightarrow h = I_{a} \nu \ell_{a} + I_{a} \nu \ell_{a}$$

Note dh 70 since la notates => dea 70
dt

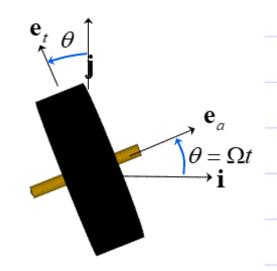
Ca = ces Di + sin Oj Et = -sinDi + coo j

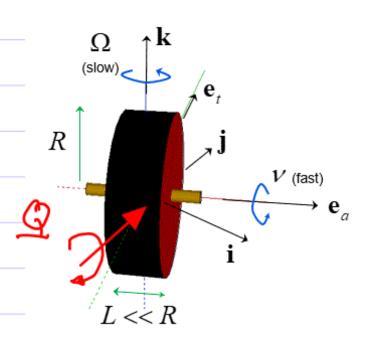
=> dla = do {-sindi+cooj} = Slet
dt dt {

Hence Q = dh = Ianalt

Note Q is perpendicular to precession axx !

Precession rate

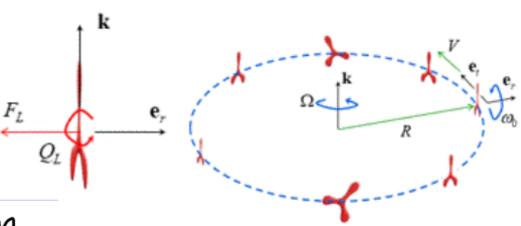




Example 6.8.2 A boomerang is subjected to an aerodynamic lift force and moment

$$F_L = \frac{\pi}{4} \rho C_L L^2 \left(V^2 + L^2 \omega_0^2 \right) \qquad Q_L = \frac{\pi}{4} \rho C_L L^4 V \omega_0$$

Find a formula for the radius of the path



 $\mathbf{I}_G = \frac{mL^2}{6} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Circular motion => precession

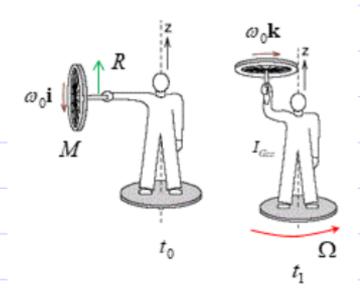
rate \(\L = \frac{V}{2} \)

$$I_{\alpha} = m \lambda^2$$

$$\Rightarrow R = \frac{4}{3\pi} \frac{m}{\rho C_{x}L^{2}}$$

(Can also use F2 to show Wo = V2 V/L)

- 6.8.3 Example Spinning wheel on a freely rotating platform. Wheel has (absolute) angular velocity shown. Find the angular velocity of the platform at time t_1
- Platfom rotates freely ⇒ no external moment parallel



$$\Rightarrow \Omega = - \frac{mR^2}{I_{G22}} W_0$$